UNIVERSITY OF OSLO

Synthesizing Individual Participant Data Obtained From Complex Sampling Surveys: A Two-Stage IPD Meta-Analysis Approach

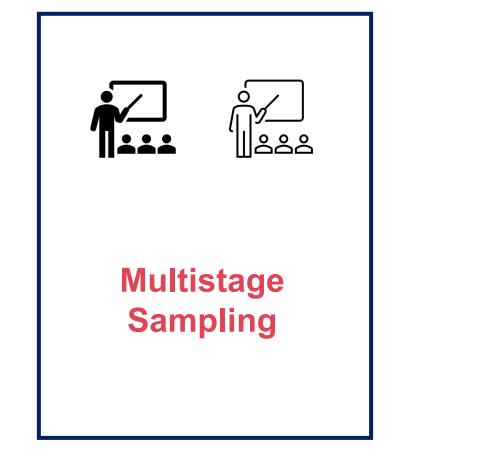
Diego G. Campos*; Mike W.-L. Cheung; & Ronny Scherer

*Centre For Educational Measurement (CEMO), Faculty of Educational Sciences, University of Oslo, Norway

18.11.22

What Are Complex Surveys? Examples

- Program for International Student Assessment (PISA)
- Trends in International Mathematics and Science Study (TIMSS)
- National Assessment of Educational Progress (NAEP)
- National Educational Panel Study (NEPS)

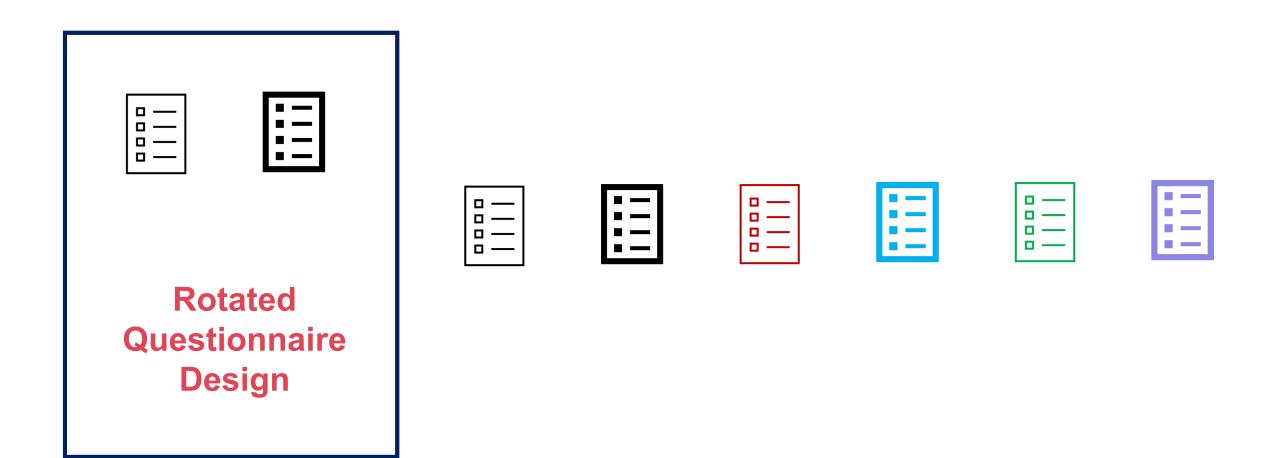


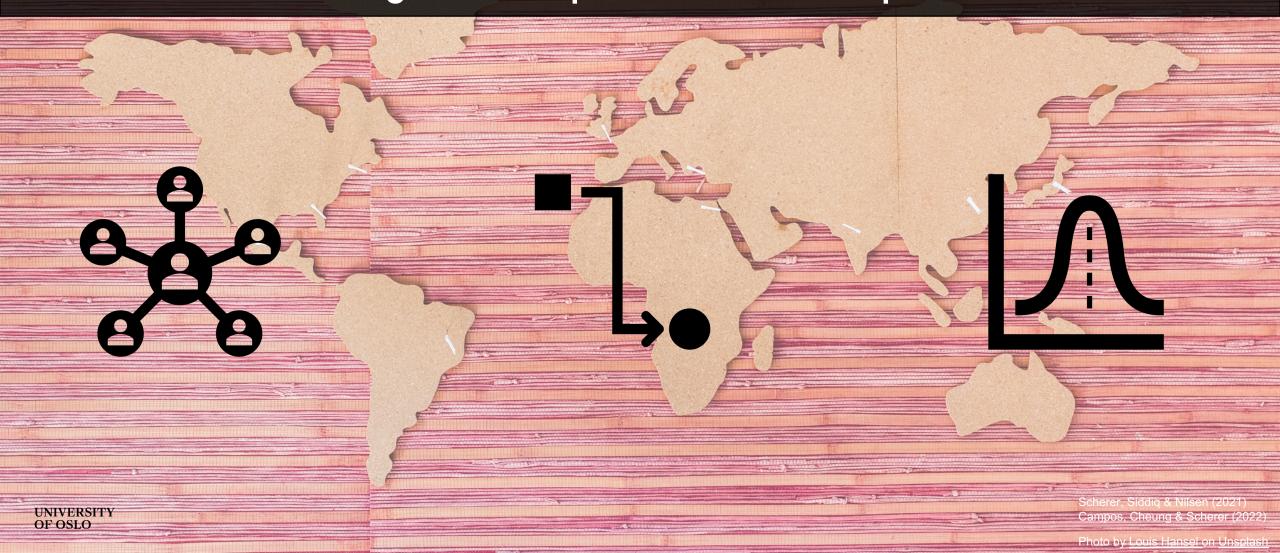
NATIONAL ASSESSMENT OF EDUCATIONAL PROGRESS IEA
TIMSS

NEPS

- Increasing the understanding of critical factors influencing teaching and learning
- Identifying key educational issues: educational inequalities
- Informing national strategies for monitor and improve the educational system

1st stage


2nd stage

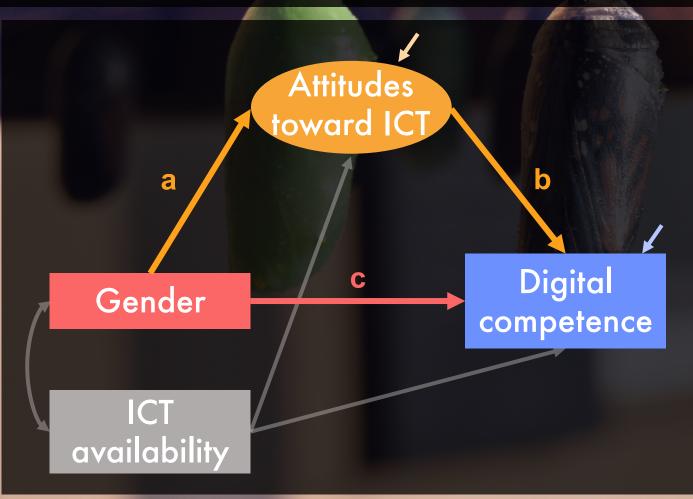


Total weights refer to the weight components that reflect the inclusion probability of a school and a student of being selected.

$$W_{ij} = \frac{1}{p_{ij}}$$

Large and Representative Samples

High Quality Measures


UNIVERSITY

OF OSLO

Scherer, Siddiq & Nilsen (2021) Campos, Cheung & Scherer (2022)

Photo by Annie Spratt on Unsplash

Raw Data

UNIVERSITY OF OSLO

Scherer, Siddiq & Nilsen (2021) Campos, Cheung & Scherer (2022)

Photo by Suzanne D. Williams on Unsplash

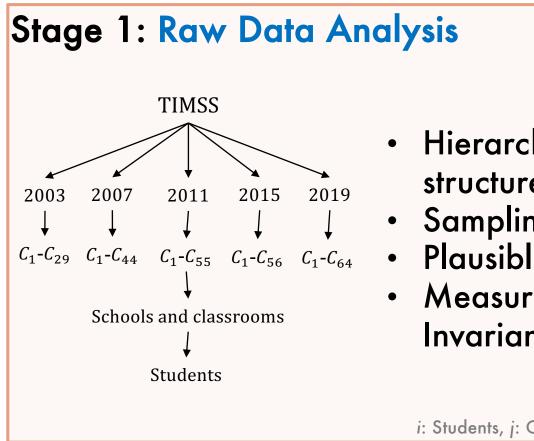
Challenges of Meta-Analysis in Educational Research

Small samples in primary studies

Study characteristics that may affect the quality and magnitude of effects

Insufficient psychometric quality of outcome measures

> Scherer, Siddiq & Nilsen (2021) Campos, Cheung & Scherer (2022)


Challenges in the Synthesis of Complex Survey Data

Stapleton et al., (2016)

Rutkowski, Gonzalez, Joncas & von Davier (2010)

von Davier et al., (2009)

- Hierarchical structure
- Sampling weights
- Plausible values
- Measurement Invariance

i: Students, j: Classrooms, k: Countries

Stage 2: **Meta-Analysis**

- **Multivariate** meta-analysis
- Multilevel meta-analysis
- **Mixed-effects** meta-regression

Level 1 (individual participants): Level 2 (clusters):	$Y_{ijk} = \beta_{0jk} + \beta_{1jk}X_{ijk} + e_{ijk}$ $\beta_{0jk} = \beta_{00k} + \frac{\beta_{01k}Z_{jk}}{\beta_{01k}} + u_{0jk}$	Complex Survey Designs
	$\beta_{1jk} = \beta_{10k} + u_{1jk}$	
Level 3 (primary studies):	$\beta_{00k} = \gamma_{000} + \nu_{00k}$	Measurement
	$\beta_{01k} = \frac{\gamma_{010}}{\gamma_{010}} + v_{01k}$	Heterogeneity
	$\beta_{10k} = \gamma_{100} + v_{10k}$	
$\beta = \beta + r$ with $r = N(0, \sigma^2)$		Multilevel

 $\beta_{01k} = \theta_k + r_k \text{ with } r_k \sim N(0, \sigma_{r_k}^2).$ $\theta_k = \mu + u_k \text{ with } u_k \sim N(0, \sigma_u^2).$

UNIVERSITY

OF OSLO

Campos, Cheung & Scherer (2022) Brunner, et al. (2022)

Structures

Analytic Examples Two-Stage IPD Meta-Analysis Approach

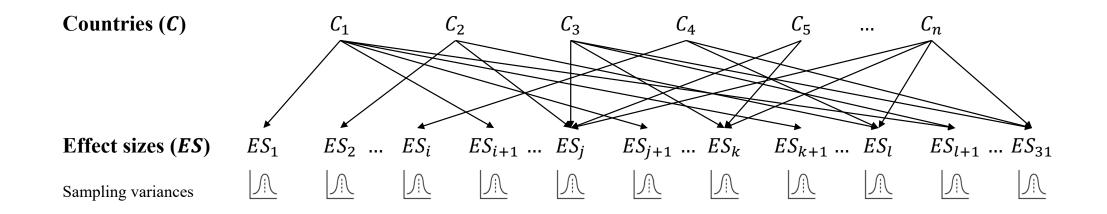
UNIVERSITY OF OSLO

To what extent do girls and boys in secondary education differ in their digital skills?

ICILS 2013

ICILS 2018

Constructs of interest	GenderCIL
Complex data structure	 Study ID Country ID School ID Student ID Student weights Jacknife codes


To what extent do girls and boys in secondary education differ in their digital skills?

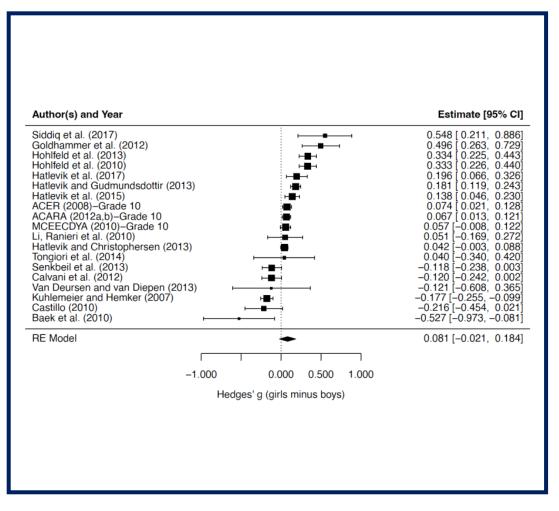
$$d = \frac{\bar{x}_G - \bar{x}_B}{\sqrt{\frac{(n_G - 1)SD_G^2 + (n_B - 1)SD_B^2}{n_G + n_B - 2}}} \text{ with } v_d = \frac{n_G + n_B}{n_G n_B} + \frac{d^2}{2(n_G + n_B)}$$
$$g = \left(1 - \frac{3}{4(n_G + n_B - 2) - 1}\right) \cdot d \text{ with } v_g = \left(1 - \frac{3}{4(n_G + n_B - 2) - 1}\right)^2 \cdot v_d$$

Three-level random-effects model with effect sizes nested in countries

Level 1 (sampling variance): $\beta_{jk} = \theta_{jk} + r_{jk}$ Level 2 (within countries): $\theta_{jk} = \lambda_k + q_{jk}$ Level 3 (between countries): $\lambda_k = \mu + u_k$ $r_{jk} \sim N(0, \sigma_r^2), q_{jk} \sim N(0, \sigma_q^2), u_k \sim N(0, \sigma_u^2)$

Individual Participant Data

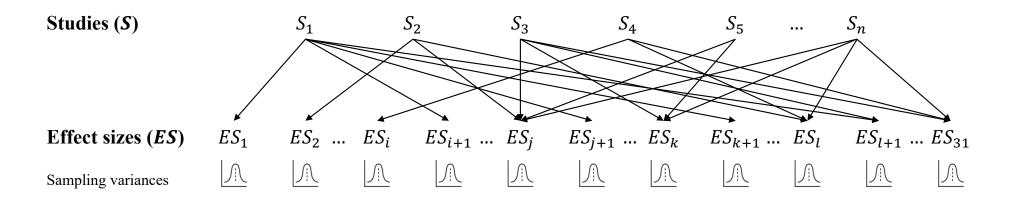
ICILS 2013–Ontario, C. ICILS 2013–Korea ICILS 2013–Slovenia ICILS 2018–Finland ICILS 2013–Newfoundl ICILS 2013–Newfoundl ICILS 2013–Australia ICILS 2013–Australia ICILS 2013–Chile ICILS 2013–Chile ICILS 2018–Luxembou ICILS 2018–USA ICILS 2013–The Nethel ICILS 2013–The Nethel ICILS 2013–Denmark ICILS 2013–Crech ICILS 2013–Crech ICILS 2013–Cotatia ICILS 2013–Russian Fe ICILS 2013–Russian Fe ICILS 2013–Russian Fe ICILS 2013–Russian Fe ICILS 2013–Russian Fe ICILS 2013–Cotatia ICILS 2013–Russian Fe ICILS 2013–Russian Fe ICILS 2013–Russian Fe ICILS 2013–Russian Fe ICILS 2013–Cotatia ICILS 2013–ICICA ICILS 2013–ICICA ICIC	public of land and Labrado g SAR rlands public ederation public RUS) d			T T T	0.447 [0.347, 0.548] 0.442 [0.368, 0.515] 0.432 [0.367, 0.497] 0.417 [0.343, 0.491] 0.365 [0.287, 0.443] 0.344 [0.276, 0.4412] 0.328 [0.248, 0.408] 0.314 [0.260, 0.366] 0.300 [0.228, 0.330] 0.296 [0.226, 0.366] 0.282 [0.235, 0.330] 0.278 [0.224, 0.331] 0.265 [0.179, 0.352] 0.251 [0.167, 0.335] 0.249 [0.169, 0.330] 0.212 [0.119, 0.366] 0.199 [0.124, 0.274] 0.199 [0.124, 0.274] 0.199 [0.124, 0.274] 0.199 [0.124, 0.268] 0.187 [0.116, 0.258] 0.185 [0.111, 0.258] 0.185 [0.111, 0.258] 0.166 [0.093, 0.230] 0.166 [0.093, 0.230] 0.166 [0.093, 0.230] 0.166 [0.093, 0.230] 0.166 [0.093, 0.230] 0.160 [0.071, 0.164] 0.090 [0.021, 0.159] 0.078 [0.010, 0.145] 0.055 [-0.065, 0.175] 0.046 [-0.031, 0.123] 0.017 [-0.061, 0.095]
	-0.200 0	.000 0.3	• 1 1 200 0.400	0.600	0.218 [0.174, 0.262]


 \bar{g}_{IPD} = 0.218 (95% CI [0.174, 0.262])

Scherer, Siddiq & Nilsen (2021) Campos, Cheung & Scherer (2022)

Individual Participant Data

ICILS 2013–Ontario, CA ICILS 2013–Korea ICILS 2013–Korea, Republic of ICILS 2018–Korea, Republic of ICILS 2018–Finland ICILS 2013–Newfoundland and Labrador ICILS 2013–Newfoundland ICILS 2013–Chile ICILS 2013–Ine Netherlands ICILS 2013–Germany ICILS 2013–Germany ICILS 2013–Creatia ICILS 2013–Creatia ICILS 2013–Creatia ICILS 2013–Creatia ICILS 2013–Poland ICILS 2013–Slovak Republic ICILS 2013–Shovak Republic ICILS 2013–Thailand ICILS 2013–Thailand ICILS 2013–Thailand ICILS 2013–Switzerland ICILS 2013–Kazakhstan		0.447 [0.347, 0.548] 0.442 [0.368, 0.515] 0.432 [0.367, 0.497] 0.417 [0.343, 0.491] 0.365 [0.287, 0.443] 0.344 [0.276, 0.412] 0.328 [0.248, 0.408] 0.314 [0.260, 0.368] 0.300 [0.228, 0.373] 0.296 [0.226, 0.366] 0.282 [0.235, 0.330] 0.278 [0.224, 0.331] 0.265 [0.179, 0.352] 0.251 [0.167, 0.335] 0.212 [0.119, 0.366] 0.212 [0.119, 0.366] 0.199 [0.124, 0.274] 0.199 [0.124, 0.274] 0.199 [0.124, 0.268] 0.185 [0.111, 0.258] 0.185 [0.111, 0.258] 0.185 [0.111, 0.258] 0.166 [0.093, 0.239] 0.160 [0.091, 0.230] 0.145 [0.073, 0.216] 0.099 [0.029, 0.170] 0.093 [0.029, 0.175] 0.091 [0.017, 0.164] 0.090 [0.021, 0.159] 0.078 [0.010, 0.145]
CILS 2013–City of Buenos Aires ICILS 2018–Uruguay ICILS 2013–Turkey	•	0.055 [-0.065, 0.175] 0.046 [-0.031, 0.123] 0.017 [-0.061, 0.095]
	•	0.218 [0.174, 0.262]
-0.200 0.00		
Hed	ges' g (girls minus boys)	


Aggregate Data

Scherer, Siddiq & Nilsen (2021) Campos, Cheung & Scherer (2022)

Two-Stage Individual Participant Data Meta-Analysis Combining AD and IPD

Three-level random-effects model with effect sizes nested in countries/studies

IPD ? AD

Two-Stage Individual Participant Data Meta-Analysis Stage 2 - Moderation Analysis AD vs. IPD

Baseline model	μ̂ [95 % CI]	B [95 % CI]	$\tau^2_{IPD} [95 \% CI]$	τ_{AD}^2 [95 % <i>CI</i>]	γ^2_{IPD}	γ^2_{AD}
Model 1: Data-specific						
effect sizes, data-specific between-country, and data-	.074	.144	.003	.035	.009	.002
specific between-sample residual heterogeneity	[003, .177]	[.032, .256]	[.001,.013]	[.011,.093]	[.001, .020]	[.000, .073]

Two-Stage Individual Participant Data Meta-Analysis Stage 2 - Moderation Analysis AD vs. IPD

Baseline model	μ̂ [95 % CI]	<i>B</i> [95 % <i>CI</i>]	$\tau^2_{IPD} [95 \% CI]$	$\tau^2_{AD} [95 \% CI]$	γ^2_{IPD}	γ^2_{AD}
Model 1: Data-specific effect sizes, data-specific						
between-country, and data- specific between-sample residual heterogeneity	.074 [003, .177]	.144 [.032, .256]	.003 [.001,.013]	.035 [.011,.093]	.009 [.001, .020]	.002 [.000, .073]
Model 2: Data-specific effect sizes, overall between-						
country heterogeneity, and data-specific between-	.031 [079 .140]	.187 [.080, .295]	.003 [.000 .016]	.035 [.013, .095]	-	08 .020]
sample residual heterogeneity						

 df
 AIC
 BIC
 AICc
 logLik
 LRT
 pval
 QE
 tau^2

 Full
 6
 -40.5818
 -28.9909
 -38.6728
 26.2909
 479.8761
 NA

 Reduced
 5
 -41.3649
 -31.7057
 -40.0315
 25.6824
 1.2170
 0.2700
 479.8761
 NA

Two-Stage Individual Participant Data Meta-Analysis Stage 2 - Moderation Analysis AD vs. IPD

Baseline model	μ̂ [95 % CI]	B [95 % CI]	$\tau^2_{IPD} [95 \% CI]$	$\tau^2_{AD} [95 \% CI]$	γ_{IPD}^2	γ^2_{AD}
Model 1: Data-specific effect sizes, data-specific between-country, and data- specific between-sample residual heterogeneity	.074 [003, .177]	.144 [.032, .256]	.003 [.001,.013]	.035 [.011,.093]	.009 [.001, .020]	.002 [.000, .073]
Model 2: Data-specific effect sizes, overall between- country heterogeneity, and data-specific between- sample residual heterogeneity	.031 [079 .140]	.187 [.080, .295]	.003 [.000 .016]	.035 [.013, .095]	-	08 .020]
Model 3: Data-specific effect sizes, overall between- country heterogeneity, and overall between-sample residual heterogeneity	.065 [012, .142]	.158 [.070, .245]		02 .013]		02 , .013]

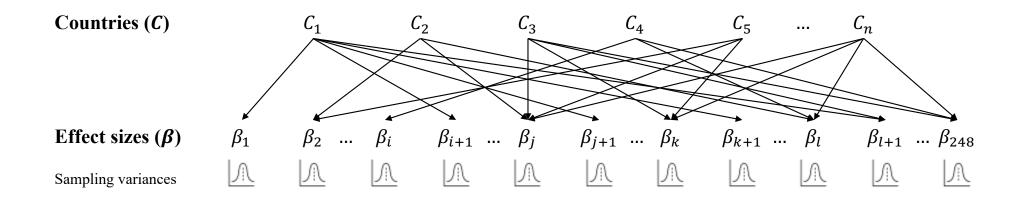

To what extent is class-average student achievement in mathematics related to individual students' mathematics self-concept after controlling for students' individual mathematics performance in primary school (BFLPE)?

TIMSS	

Constructs of interest	Mathematics achievementSelf-concept
Complex data structure	 Study ID Country ID Classroom ID Student ID Student weights Classroom weights

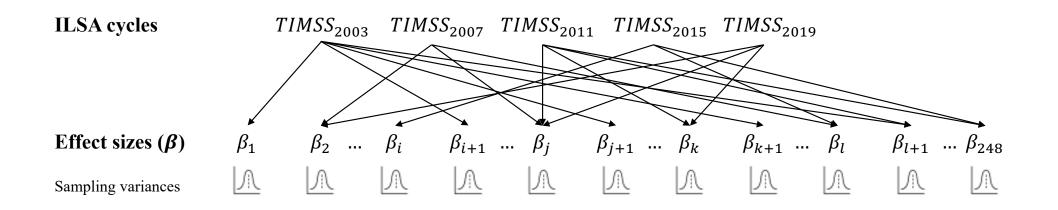
Multilevel SEM to estimate contextual effects

 $ES_{BFLPE} = (\beta_B - \beta_W)$


Three-level random-effects model with effect sizes nested in countries

Level 1 (sampling variance): Level 2 (within countries): Level 3 (between countries):

$$\beta_{jk} = \theta_{jk} + r_{jk} \quad r_{jk} \sim N(0, \sigma_r^2), q_{jk} \sim N(0, \sigma_q^2), u_k \sim N(0, \sigma_u^2)$$


$$\theta_{jk} = \lambda_k + q_{jk}$$

$$\lambda_k = \mu + u_k$$

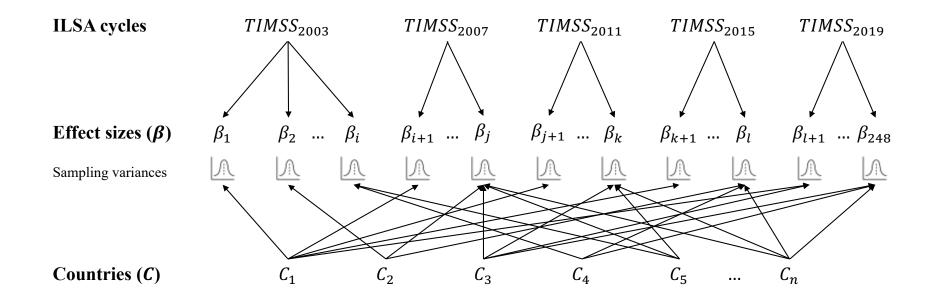
Three-level random-effects model with effect sizes nested in cycles

Level 1 (sampling variance): $\beta_{jk} = \theta_{jk} + r_{jk}$ $r_{jk} \sim N(0, \sigma_r^2), q_{jk} \sim N(0, \sigma_q^2), u_k \sim N(0, \sigma_u^2)$ Level 2 (within cycles): $\theta_{jk} = \lambda_k + q_{jk}$ $r_{jk} \sim N(0, \sigma_r^2), q_{jk} \sim N(0, \sigma_q^2), u_k \sim N(0, \sigma_u^2)$ Level 3 (between cycles): $\lambda_k = \mu + u_k$ $\lambda_k = \mu + u_k$

Four-level cross-classified random-effects model with countries and cycles

Level 1:

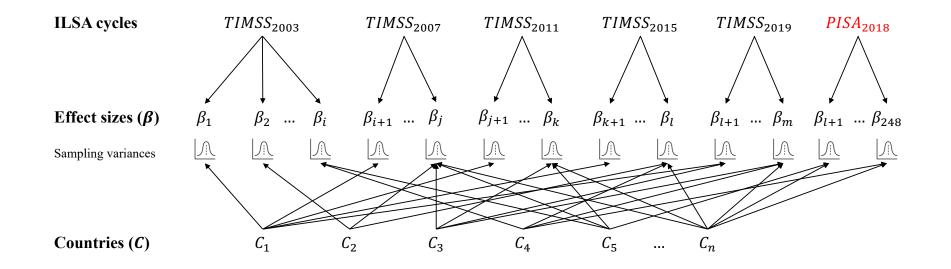
Level 2:


Levels 3 and 4:

$$\beta_{j(kl)} = \theta_{j(kl)} + r_{j(kl)}$$

$$\theta_{j(kl)} = \lambda_{(kl)} + q_{j(kl)}$$

$$\lambda_{(kl)} = \mu + u_k + p_l$$


$$r_{j(kl)} \sim N(0, \sigma_r^2), q_{j(kl)} \sim N(0, \sigma_q^2),$$

$$u_k \sim N(0, \sigma_u^2), p_l \sim N(0, \sigma_p^2)$$

Four-level cross-classified random-effects model with countries and cycles

Level 1: Level 2: Levels 3 and 4: $\beta_{j(kl)} = \theta_{j(kl)} + r_{j(kl)}$ $\theta_{j(kl)} = \lambda_{(kl)} + q_{j(kl)}$ $\lambda_{(kl)} = \mu + u_k + p_l$

$$r_{j(kl)} \sim N(0, \sigma_r^2), q_{j(kl)} \sim N(0, \sigma_q^2), u_k \sim N(0, \sigma_u^2), p_l \sim N(0, \sigma_p^2)$$

Baseline model	μ̂ [95 % CI]	$ au_{ES}^2 [95 \% CI]$	σ_{C}^{2} [95 % <i>CI</i>]	σ_{S}^{2} [95 % <i>CI</i>]	I_{ES}^2	I_C^2	I_s^2
Model 1: Standard random-effects model	458 [481,436]	.025 [.020, .030]	-	-	82.4 %	-	-
Model 2: Three- level random- effects model with effect sizes nested in countries	451 [486,416]	.004 [.002, .006]	.021 [.014, .031]	-	12.1 %	70.0 %	-
Model 3: Three- level random- effects model with effect sizes nested in TIMSS cycles	458 [484,432]	.025 [.020, .031]	-	.000 [.000, .002]	82.4 %	-	0.0 %
Model 5: Four- level cross- classified random- effects model	452 [489,415]	.003 [.001, .006]	.021 [.014, .031]	.000 [.000, .002]	10.9 %	70.6 %	0.7 %

Moderator	Three-level mixed-effects meta-regression					
-	Mod	lel 2a	Model 2b			
-	В	SE	В	SE		
Intercept	-0.137	0.174	-0.812	0.225		
Cultural dimensions						
PDI	-0.002	0.002	-	-		
IDV	-0.002	0.001	-	-		
MAS	-0.001	0.001	-	-		
UAI	-0.001	0.001	-	-		
LTO	0.000	0.001	-	-		
IVR	0.000	0.002	-	-		
Economic development			-	-		
HDI	-	-	0.426*	0.258		
Moderator test						
$Q_M(df)$	8.6 (6), <i>p</i> = .20		5.5(1), p = .02			
Variance explanation		-		-		
R_{ES}^2	0.	0%	2.:	5%		
R_C^2	5.	5%	12.	.3%		

UNIVERSITY OF OSLO

Potential of Two-Stage IPD Meta-Analysis

- 1. Enlarge the generalizability of meta-analytic conclusions
- 2. Two-stage IPD meta-analysis enables researchers to synthesize information from complex surveys studies
- 3. Standardized analyses across studies
- 4. Direct and model-based generation of the effect sizes of interest
- 5. Appropriate handling of statistical dependencies in meta-analytic data sets from complex sampling surveys

Campos, D, Cheung, W.-L.M., & Scherer, R. (2022). A Primer on Synthesizing Individual Participant Data Obtained From Complex Sampling Surveys: A Two-Stage IPD Meta-Analysis Approach. (Accepted for Publication: Psychological Methods)

Mastodon: <u>diegc_@nerdculture.de</u> LinkedIn: <u>Diego Campos</u> Email: <u>diegogc@uio.no</u> Webpage: <u>www.diegocampos.co</u>

References

- Brunner, M., Keller, L., Stallasch, S. E., Kretschmann, J., Hasl, A., Preckel, F., Lüdtke, O., & Hedges, L. V. (2022). Meta-Analyzing Individual Participant Data From Studies With Complex Survey Designs: A Tutorial on Using the Two-Stage Approach for Data From Educational Large-Scale Assessments. *Research Synthesis Methods*, n/a(n/a). <u>https://doi.org/10.1002/jrsm.1584</u>
- Cooper, H., & Patall, E. A. (2009). The relative benefits of meta-analysis conducted with individual participant data versus aggregated data. *Psychological Methods*, *14*(2), 165. <u>https://doi.org/10.1037/a0015565</u>
- Curran, P. J., & Hussong, A. M. (2009). Integrative Data Analysis: The Simultaneous Analysis of Multiple Data Sets. *Psychological Methods*, *14*(2), 81–100. https://doi.org/10.1037/a0015914
- Cheung, M. W. L., & Jak, S. (2016). Analyzing big data in psychology: A split/analyze/metaanalyze approach. *Frontiers in Psychology*, 7(MAY), 1–13. https://doi.org/10.3389/fpsyg.2016.00738
- Fernández-Castilla, B., Maes, M., Declercq, L., Jamshidi, L., Beretvas, S. N., Onghena, P., & Van den Noortgate, W. (2019). A demonstration and evaluation of the use of cross classified random-effects models for meta-analysis. *Behavior Research Methods*, 51(3), 1286–1304. <u>https://doi.org/10.3758/s13428-018-1063-2</u>
- Marsh, H. W., Lüdtke, O., Robitzsch, A., Trautwein, U., Asparouhov, T., Muthén, B., & Nagengast, B. (2009). Doubly-Latent Models of School Contextual Effects: Integrating Multilevel and Structural Equation Approaches to Control Measurement and Sampling Error. *Multivariate Behavioral Research*, 44(6), 764–802.
- Pustejovsky, J. E., & Tipton, E. (2022). Meta-analysis with Robust Variance Estimation: Expanding the Range of Working Models. *Prevention Science*, 23, 425–438. https://doi.org/10.1007/s11121-021-01246-3
- Rutkowski, L., Gonzalez, E., Joncas, M., & von Davier, M. (2010). International Large-Scale Assessment Data: Issues in Secondary Analysis and Reporting. *Educational Researcher*, 39(2), 142–151. <u>https://doi.org/10.3102/0013189X10363170</u>
- Scherer, R., Siddiq, F., & Nilsen, T. (2021). *The Potential of International Large-Scale Assessments for Meta-Analyses in Education*. PsyArXiv. <u>https://doi.org/10.31234/osf.io/bucf9</u>
- Stapleton, L. M. (2013). Incorporating sampling weights into single-and multi-level models. In L. Rutkowski, M. von Davier, & D. Rutkowski (Eds.), *Handbook of international large-scale assessment: Background, technical issues, and methods of data analysis* (pp. 363–388). Chapman and Hall/CRC. https://doi.org/10.1201/b16061