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Causal inference and confounding

Our focus today is on meta-analyses that address causal
questions (not questions of association).

Studies that randomize the exposure usually provide the strongest
evidence for causation. But often we cannot randomize.

In nonrandomized studies, any association we observe between the
exposure and outcome might not be causal. It could be biased by
uncontrolled confounders.
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Causal inference and confounding

Confounders: Variables that affect both the exposure and the
outcome, potentially producing a spurious association.

In individual studies, one way to eliminate bias from confounding is
to measure confounders before the exposure occurred and
statistically control for them:

I Regression adjustment

I Restricting analysis to subsets with the same values of
confounders

I Propensity score methods

I Etc.
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Causal inference and confounding

Also need a clear temporal ordering of confounders, exposure,
and outcome.
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Confounding in meta-analyses

Meta-analysts can try to reduce bias due to uncontrolled
confounding when designing inclusion criteria:1

I Cross-sectional studies provide very weak evidence for
causation unless temporal ordering of exposure and outcome
is clear.

I Default starting point: Include only randomized studies plus
longitudinal nonrandomized studies that (i) measure exposure
before outcome and (ii) control for baseline confounders and
baseline outcome.

I Can also stipulate that studies with weaker designs will be
included only in secondary analyses.

1Mathur & VanderWeele (2022b); Ann Rev Public Health
5 / 41



Confounding in meta-analyses

Even with well-chosen inclusion criteria, meta-analyses of
nonrandomized studies are often still at some risk of bias due to
uncontrolled confounding.
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Goal

Assess the strength of evidence for causality in meta-analyses of
nonrandomized studies that are potentially subject to uncontrolled
confounding.

How severe would uncontrolled confounding have to be to “explain
away” the results of the meta-analyses?

We’ll consider methods address this question in a way that doesn’t
require knowledge about the uncontrolled confounder(s).
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Sensitivity analysis for a single study

VanderWeele TJ & Ding P (2017). Sensitivity analysis in nonrandomized
research: Introducing the E-value. Annals of Internal Medicine.

Ding P & VanderWeele TJ (2016). Sensitivity analysis without assumptions.
Epidemiology.

VanderWeele TJ & Mathur MB (2020). Commentary: Developing best-practice
guidelines for the reporting of E-values. International Journal of Epidemiology.
VanderWeele & Ding (2017); Ding & VanderWeele (2016); VanderWeele &
Mathur (2020)
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Example: Benzodiazepines and dementia

Does long-term use of benzodiazepines increase the risk of
dementia?

This question has been contentious, in part because of the
potential for uncontrolled confounding.2

2Salzman (2020)
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Example: Benzodiazepines and dementia

Preclinical dementia and related symptoms (e.g., sleep
disturbances) could cause a patient to take benzodiazepines.

Also, preclinical dementia could later progress to full-scale
dementia.

So preclinical dementia is a confounder. If not statistically
controlled in a nonrandomized study, it might produce a spurious
association between benzodiazepines and clinical dementia.
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The E-value for the point estimate

Confounding RRs: The strength of association (RR scale) that
uncontrolled confounder(s) have jointly with the exposure and/or
outcome (conditional on measured confounders).

E-value: The minimum confounding RRs that uncontrolled
confounder(s) would need to have with both exposure and
outcome to fully explain away the observed effect (i.e., to have no
causal effect).

E-value = RR+
√
RR · (RR− 1), RR > 1

(For RR < 1, first take its inverse.)
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Interpreting the E-value

Large E-value ⇒ Only severe uncontrolled confounding could
explain away the effect ⇒ robust to uncontrolled confounding

Small E-value⇒Weak uncontrolled confounding could potentially
explain away the effect ⇒ not robust to uncontrolled confounding
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The E-value for the confidence interval

It’s also good practice to report the E-value for the confidence
interval.

That E-value represents the minimum strengths of confounding
RRs that uncontrolled confounder(s) would need to have jointly
with both exposure and outcome to shift the confidence interval
to include the null.

In practice, the E-value for the CI can be obtained by applying the
E-value formula (RR+

√
RR(RR− 1)) to the CI limit that is

closer to the null.
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Example: Benzodiazepines and dementia

de Gage et al. (2012) conducted a longitudinal study of older
adults, adjusting for numerous pre-exposure confounders:

RR ≈ 1.38, 95% CI: [1.05, 1.81]

RRs are converted from the hazard ratio scale because the outcome was
not rare.
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Example: Benzodiazepines and dementia

E-value for point estimate: 1.38 +
√

1.38 · (1.38− 1) = 2.11

E-value for CI limit: 1.05 +
√

1.05 · (1.05− 1) = 1.30

“With an observed risk ratio of 1.38, uncontrolled confounder(s)
that were associated with both benzodiazepine use and dementia
by a risk ratio of 2.11-fold each, above and beyond the measured
confounders, could explain away the estimate, but jointly weaker
confounding associations could not. Uncontrolled confounder(s)
that were associated with both benzodiazepine use and dementia
by a risk ratio of 1.30-fold each, above and beyond the measured
confounders, could shift the CI to include the null, but weaker
confounding could not.”
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Example: Benzodiazepines and dementia

Now we have to think about these E-values in scientific context
and given the study design.

Given the quality of existing confounding control (e.g., the study
designs and confounders that were measured and controlled), is it
plausible or not plausible that there actually were uncontrolled
confounder(s) with confounding RRs of RR = 1.30 to 2.11?
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Sensitivity analysis for meta-analyses

Mathur MB & VanderWeele TJ (2020). Sensitivity analysis for uncontrolled
confounding in meta-analyses. Journal of the American Statistical Association.

Mathur MB & VanderWeele TJ (2020). Robust metrics and sensitivity analyses
for meta-analyses of heterogeneous effects. Epidemiology.

Mathur MB & VanderWeele TJ (2022). Methods to address confounding and
other biases in meta-analyses: Review and recommendations. Annual Review of
Public Health. Mathur & VanderWeele (2020b,a, 2022b)
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Is being overweight protective or detrimental?

Flegal et al. (2013); Global BMI Mortality Collaboration (2016)
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Is being overweight protective or detrimental?
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Is being overweight protective or detrimental?

In both meta-analyses, most studies (Flegal) or all studies (GBMC)
did not adjust for probable confounders:

I Socioeconomic status

I Physical activity

I Diet

I Baseline body mass index (BMI)

I Etc.

How might we characterize sensitivity to uncontrolled confounding
in these meta-analyses?

Flegal et al. (2013); Global BMI Mortality Collaboration (2016)
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The GRADE approach

Current standard practice (e.g., required in Cochrane Collaboration
reviews) is the GRADE approach:

1. Heuristically gauge “proportion of information” in
meta-analysis contributed by studies at low vs. high risk of
bias

2. Use this to decide whether to downgrade the overall certainty
rating for meta-analysis from the default “high certainty” to
“moderate”/“low”/“very low”

3. Can choose to upgrade rating again if, e.g., pooled estimate is
large (GRADE suggests criterion of RR > 2 or RR < 0.5)

Higgins et al. (2019); Schünemann et al. (2019)
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Current standard practice

This approach has limitations:

I Hard to intuit how much “information” each study
contributes to the meta-analysis when studies’ estimates and
precisions differ.

I Deciding how to downgrade/upgrade overall certainty rating
can be highly subjective.

I You ultimately get a qualitative rating of overall “certainty”,
rather than a quantitative summary of how numerical
estimates might have been affected by bias.

To help address these limitations, let’s look at E-value analogs
for meta-analyses.
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Sensitivity analysis for µ̂

We can directly apply the E-value to the pooled estimate (µ̂) in a
meta-analysis.

This E-value represents the average confounding RRs that
uncontrolled confounder(s) would need to have with studies’
exposures and outcomes in order to shift µ̂ to the null.

Mathur & VanderWeele (2020b), JASA; Mathur & VanderWeele (2022b);
Ann Rev Public Health

23 / 41



Sensitivity analysis for µ̂

Overweight and mortality

Strength of confounding RRs required to shift point estimates to
null:3

I Flegal: RR = 1.36

I GBMC: RR = 1.43

And to shift each CI to include null:

I Flegal: RR = 1.25

I GBMC: RR = 1.36

Given studies’ limited control of confounding, these are pretty
small...

3Based on point estimates upon our own re-analysis, which differed
negligibly from authors’ own estimates.

Mathur & VanderWeele (2022a); JAMA Network Open
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Sensitivity analysis for µ̂

This E-value does not require assumptions on distribution of the
population causal effects or the distribution of bias across studies
provided that:4

I Any distributional assumptions of the meta-analysis model are
met. If population confounded effects are non-normal, the
meta-analysis method must accommodate this.5

I The bias in each study is independent of its population causal
effect and its standard error.

4Mathur & VanderWeele (2020b), JASA; Mathur & VanderWeele (2022b);
Ann Rev Public Health

5Hedges et al. (2010); Pustejovsky & Tipton (2021)
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Limitations

Limitation of this simple E-value analog: Characterizes evidence
strength in a meta-analysis only in terms of µ̂ and its CI.

In addition to µ̂, it is good to more holistically describe the
potentially heterogeneous distribution of effects.

We can then conduct sensitivity analyses that describe the
heterogeneous distribution of effects.
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The proportion of meaningfully strong effects

One approach:

1. Choose a threshold representing a meaningfully strong
effect size in scientific context (e.g., HR > 1.1)

2. Estimate P̂>q, the proportion of population effects above
that threshold

Can also estimate and report the proportion, P̂<q∗ , of population
effects below a second (e.g., symmetrical) threshold on the other
side of the null (e.g., HR < 0.90).

Mathur & VanderWeele (2019), Stats in Med; Mathur & VanderWeele
(2020a), Epidemiology; R package MetaUtility
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The proportion of meaningfully strong effects

These metrics can help identify if:

I There are few meaningfully strong effects despite a
“significant” meta-analytic mean; or

I There are some strong effects despite a null meta-analytic
mean; or

I Strong effects in the direction opposite the meta-analytic
mean also regularly occur

Mathur & VanderWeele (2019), Stats in Med; Mathur & VanderWeele
(2020a), Epidemiology; R package MetaUtility
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The proportion of meaningfully strong effects

These proportions can be estimated using robust nonparametric
procedures (based on shrinking studies’ estimates toward µ̂)6 or
using simple parametric estimates and inference:7

P̂>q = 1− Φ

(
q − µ̂
τ̂

)
, τ̂ > 0

P̂<q∗ = Φ

(
q∗ − µ̂
τ̂

)
, τ̂ > 0

where µ̂ is the meta-analytic mean, τ̂ is the heterogeneity estimate
(i.e., standard deviation of population effects), and q and q∗ are
chosen effect-size thresholds.

6Mathur & VanderWeele (2020a)
7Mathur & VanderWeele (2019)
R package MetaUtility::prop stronger
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The proportion of meaningfully strong effects
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The proportion of meaningfully strong effects

Before considering confounding

Percentage of studies with meaningfully strong protective effects
(HR < 0.9):

I Flegal: 40% [28%, 51%]

I GBMC: 0%

Percentage of studies with meaningfully strong detrimental effects
(HR > 1.1):

I Flegal: 9% [4%, 15%]

I GBMC: 50% [34%, 63%]

Mathur & VanderWeele (2022a), JAMA Network Open
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Sensitivity analysis for P̂>q

Homogeneous bias

Let’s now do a sensitivity analysis regarding P̂>q instead of µ̂.

Rationale: When effects are heterogeneous, we might define
“explaining away” the results of the meta-analysis in terms of
substantially reducing the proportion of meaningfully strong effects.

Ĝ(r, q): The minimum confounding RRs that uncontrolled
confounder(s) would need to have with both the exposure and the
outcome to reduce to less than r (e.g., 0.15) the proportion of
studies with causal population effects stronger than q.
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Sensitivity analysis for P̂>q

Homogeneous bias

Confounding RRs in each study required to reduce percentages of
meaningfully strong protective HRs (Flegal) or detrimental HRs
(GBMC) to only 15%:

I Flegal: 1.43

I GBMC: 1.10
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Sensitivity analysis for P̂>q

Homogeneous bias

Mathur & VanderWeele (2022a), JAMA Network Open
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Sensitivity analysis for P̂>q

Heterogeneous bias

Those analyses considered bias of homogeneous strength across
studies. In certain settings,8 this is statistically conservative.9

We can additionally consider bias that is heterogeneous across
studies.

For these particular meta-analyses, considering bias that accounted
for 80% of the estimated total between-study variance (τ̂2) yielded
similar conclusions.10

8Depends on the choice of q relative to µ̂
9Mathur & VanderWeele (2020b, 2022b)

10Mathur & VanderWeele (2022a), JAMA Network Open
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Conclusions on overweight and mortality

For these 2 meta-analyses, confounding RRs of only 1.25 to 1.43 in
each study could shift µ̂ or its CI to null, or could substantially
reduce P̂>q.

Given studies’ limited control of confounding by physical, social,
behavioral, and psychological factors, these sensitivity analyses
suggest neither meta-analysis provided robust evidence for
effects in either direction.

Establishing potentially small effects of being overweight on
mortality would require improved study designs for primary studies
and meta-analyses alike.

Mathur & VanderWeele (2022a), JAMA Network Open
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Software

R: Function confounded meta in package EValue

Online calculator, including plots: evalue-calculator.com/meta

Mathur et al. (2018), Epidemiology
Detailed tutorial in Mathur & VanderWeele (2022b), Ann Rev Public Health

37 / 41

evalue-calculator.com/meta


Concluding remarks
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Further guidance on within-study biases

In a review paper, we cover other sensitivity analysis methods and
give overall recommendations:11

1. Pre-specify inclusion criteria that reduce risks of bias.
Meta-analyses addressing causal questions should usually
exclude cross-sectional studies.

2. Pre-specify which study designs will be included in primary vs.
secondary analyses. Stratify on designs that provide
substantially differing levels of evidence.

3. Qualitatively characterize risks of bias using existing
risk-of-bias rating tools12 and other summaries we suggest.

4. Quantitatively assess sensitivity to residual biases and interpret
the results in light of the qualitative risk-of-bias assessments.

11Mathur & VanderWeele (2022b); Ann Rev Public Health
12Sterne et al. (2016)
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Summary

Confounding bias in synthesized studies can propagate to
meta-analysis estimates.

In addition to limiting bias through inclusion criteria and using
existing tools to rate each study’s risks of bias, it is helpful to
quantitatively characterize the robustness of meta-analysis results
to possible confounding.

We saw methods that are analogous to the E-value for individual
studies and are straightforward to apply in practice.

Sometimes these analyses suggest that uncontrolled confounding is
a serious threat to the credibility of meta-analyses (as in the
meta-analyses on being overweight); other times, they suggest the
opposite.

40 / 41



Slide deck (including reference list)
https://osf.io/68yp3/

Contact me
R mmathur@stanford.edu
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