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To study:

The effects of an intervention on an
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For:

Studying special populations
Developing new interventions
Practitioner led research
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Graphical
Analysis of
Outcomes

Case, L. P, Harris, K. R, & Graham, S. (1992). Improving the
mathematical problem-solving skills of students with
learning disabilities: Self-regulated strategy development.
The Journal of Special Education, 26, 1-19.
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Dilemma in the Single
Case Community

Are supplemental statistics
necessary?

“We lose data about the
individual when we summarize a
graph with a single value.”

“Why aren't they including our
studies?”

It's likely that a SCED study will not be
eligible for inclusion in a meta-analysis
if only visual analysis is conducted.



Choosing
from 3
Generdl

Approaches

Design-
Comparable
Effect Sizes?

Case Specific

Effect Sizes?
(e.g., NAP, TauU,
SMDW, LRR, PoGO)

Multilevel
Modeling?



S?lnthesizing
Effect
Evidence

from Single-
Case Resedrch

Study
Types

———Single-Case Designs

l

Type(s) of

cross Cases

1 variation of

ross cases
time)

l

Qutcomes

Modeling of
Data

Different Across Cases
(interest in variation of
effects across cases)

Case-Specific
Effect Sizes




Desigh-Comparable
Effect Sizes

“What would the standardized mean
difference effect size be if one could
somehow perform a between-group
randomized experiment based on the
same population of participants,
intervention protocol, and outcome
measures?”

Choosing between the
options for
Between-Case
Standardized Mean
Differences




Baseline Treatment

100+

80

60

o

100

80

100

Sleep onset latency (minutes) for positive routines

80

60

40

24

Sessions

Figure 4.1: Multiple Baseline Data for Martin, Alan,

and John (Delemere & Dounavi, 2018)
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DCES
Calculations

scdhim application

https://jepusto.shinyapps.io
pe-fHeP [t cihim]

(Pustejovsky et al., 2021)



a - = s el 11 & jepusto.shinyapps.io,
(& # jepusto.shinyapps.io/scdhim/ & jep yapp

Baseline phase Treatment phase

Type of time trend Type of time trend

Between-case standardized mean difference estimator

level - change in level ~
cdhin I 1spect Mode Effect size yntax fi
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scdhim Load Inspect Model Effect size Syntax for R

Effect size estimates and auxilliary information

Cl coverage level (%) 95

95% Degrees
BC-SMD Std. Cl 95% CI of Auto- Intra-class Estimation
estimate Error (lower) (upper) freedom  correlation correlation Study design method

2.5719 0.4545 1.6467 3.4970 33.1820 0.1969 0.0000 Multiple Restricted
Baseline/Multiple Maximum
Frobe Likelihood

& Download

DCES Calculation

(scdhim web-based app)

Baseline
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Standardizing
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Case Specific Effect Sizes

Concern

Outliers

Baseline length

SE estimation*

Baseline trends**

Ceiling effects

Baselines of 0

Outcome scale: No true 0

Outcome has no goal

Computational accessibility
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*no smiles, because even those that have standard errors rely on tenuous assumptions
**no smiles, because even those that have trend adjustments rely on tenuous assumptions




2  single-case effect size calculator
: e Dei’;“i; and bull by James E. Pusiejovsky, Man Cnen, Paulina Grekov, & Daniel M. Swan.

Institute of
Education Sciences

Single-CasCz Effect Size Calculator
(Pustejovsky et al., 2023)

Web-based app SingleCaseES R package

https://jepusto.shinyapps.io/ https://jepusto.github.io
SCD-effect-sizes/ [SingleCaseES/

Video demonstration of the Single-Series
Calculator:
https://www.youtube.com/watch?v=V_r9
MEX9LwY

Video demonstration of the Multiple-Series
Calculator:
https://www.youtube.com/watch?v=DSW7
WUFG70g




Crozier, S, & Tincani, M.J. (2005). Using a modified social story to decrease disruptive behavior

of a child with autism. Focus on Autism and Other Developmental Disabilities, 20, 150-157.
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Summary of Effect Sizes from Crozier & Tincani (2005)

Number of Talk Outs
s w B &

Phase Change: Al to Bl

NAP =1.00
SMDW = 2.60
LRR = -1.48

% Change = -77
PoGO = 791

Phase Change: Bl to A2

NAP = .89
SMDW = 1.91
LRR =116
% Change = 219
POGO = 64.2

Phase Change: A2 to B2

NAP =100
SMDW = 1562
LRR = -3.40
% Change = -97
PoGO = 97.9




Generalized Linear Mixed Models

Multilevel

¥

Linear Mixed Models (LMMs)
ES metrics: log response ratio, log ] ]
odds ratio ES metrics: raw score, standardized
mean difference

Probability Distribution

of Raw B

D q t a l - g Yesﬂ
, Additional Questions:

Additional Questions:

Autocorrelation? Trends in 2+ phases?
Within-case homogeneity? How is time operationalized?
. . Between-case homogeneity? How is time centered?
ChOOSl ng between the Opt|OﬂS Between-study homogeneity? Does treatment affect both level & trend?
i Autocorrelation?
for multilevel models of SCED Within-case homogeneity?

Between-case homogeneity?
Between-study homogeneity?

Figure 6.2: Flow Chart for the Selection of Multilevel Modeling Approach



Multilevel Modeling
Options for Synthesis of
SCED Studies

Three-level model

MultiSCED application

(Declercq et al., 2020)
http://34.25113.245/MultiSCED

Your preferred application
R, SAS, etc.




v

It’s all about
context.

Design-Comparable: Purpose of the study involves
the comparison and averaging of effects across
single-case and group designs

!I 6

Case Specific: Aim is to synthesize findings from only SCD studies,
exploring variation in treatment effects by categorical differences
or individual participant characteristics, If outcome measures vary
across studies,

MLM: Analyzing a set of SCEDs that use very similar outcome measures,
and the aim is to study effects over time within and between cases.
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Abstract
Culturally responsive inlerventions for autistic children and their families have been developed and implemented to address
issues related to limited representation, inequities, and disparities in access to care of minoritized families in research.
ailable reviews are relatively limited in scope or do not synthesize interventions specifically. Therefore, we
conducted a meta-analysis to synthesize autism intervention literature that specifically targeted autistic individuals and their
family members from minoritized backgrounds, such as immigrant families. We used four databases to identify studies that
responsive interventions with minoritized autistic children and their families. An article was included if it
included empirical intervention data using an experimental design. A total of 354 studies were initially screened, and 24
studies were included. Effect sizes of these studies were extracted across two levels (i.e.. child and family levels). D:
group design studies were extracted manually, and data from single-case design studies were extracted usi
tool. We used design-comparable standardized effect sizes to compare across both designs. The analysis revealed a large,
positive, and significant overall effect size across culturally responsive interventions. Specifically, social-commul i
and mental health outcomes yielded significant effects at the child level. Additionally, parents’ mental health and fidelity
strategy implementation also yielded significant results. Our results suggest that culturally responsive interventions y
comparable outcomes o unadapied, original interventions. Future research should examine the distinction between the effect
of cultural adaptation and the efficacy of the intervention itse
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ABSTRACT

Embedded instruction is & ded practice to support and learning of young children with
disabillties in inclusive early childhood settings and natural environments. The number of individual scudics

investigating the impact of embedded interventions on child learning outcomes has increased in ¢

In the current systematic review and meta-analysis, we examined the methadological quality,
and eflects of single-case experimental rescarch studies focused on embedded instruction to determine whe
the evidence from these studies suggest embedded instruction as an evidence-based practice for young children

xperimen
and were included in this systematic review and metaanalysis. The studies were conducted
esearch groups with no overlapping suthorship at seven diffe

countries. The mean treatment effect of embedded instruction on child leaming outcomes across the 10 studies

was 80, Thi ¢ review and meta-analysk

an evidence-based practice for young children with disabilities and to support its continued use in enhancing the

development and learning of young children with disabilities in inclusive early childhood settings. Implieations

for future research and practice are discussed.

e sufficient evidence to consider embedded instruction as

Some Concrete Examples

Recent syntheses using DCES and Case Specific effect size estimation methods
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ABSTRACT KEYWORDS

We have entered an era in which scientific evidence increasingly informs Individual patient meta
research practice and policy. As there is an exponential increase in the use analysis; meta-analysis;
of single-case experimental designs (SCEDs) to evaluate intervention effect- ~ Moderators; Monte Carlo.
iveness, there is acct evidence available for quantitative synthesis. ;":d"i::_‘i?n"‘:iﬁs‘;m”“m"
Consequently, there is a growing interest in techniques suitable to meta- me"emg‘ design
analyze SCED research. One technique that can be applied is individual

patient data (IPD) meta-analysis. IPD is a flexible approach, allowing for a

variety of modeling options such as modeling moderators to explain inter-

vention heterogeneity. To date, no methodological research has been con-

ducted to evaluate the statistical properties of effect estimates obtained by

using IPD meta-analysis with the inclusion of moderators. This study is

designed to address this by conducting a large-scale Monte Carlo study.

Based on the results, specific recommendations are provided to indicate

under which conditions the IPD meta-analysis including moderators is

suitable.
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A Systematic Review and Meta-Analysis of Single Case Experimental
Design Play Interventions for Children with Autism and Their Peers
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review and meta-analysis examined interventions targeting play skills of children with autism spectrum
disorder (ASD) involving typically developing (TD) peers. The objectives of this work are to (a) identify and describe the
characteristics and components of interventions aimed at improving play skills in children with ASD and their TD peers, (b)
examine the role of peers in interventions, () evaluate intervention effects, and (d) identify potential moderating variables

Psychological Methods

Multilevel Meta-Analysis of Single-Case Experimental Designs Using
Robust Variance Estimation

Man Chen and James E. Pustejovsky
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that may influence intervention oulcomes. Twenty single-case experimental design (SCED) studies published between 2000
and 2020 were included and summarized. The majority of interventions produced significant effects, further supporting the
inclusion of TD peers in interventions targeting play skills for children with ASD. Recommendations for future rescarch

and practice are discussed.
Keywords Autism spectrum disorder - Peers - Play - Intervention
Play is essential to childhood development. The develop-  while communicating about play. proposing a script, assign-

ment of play skills is linked to increased social communica: ing roles, etc.) ([Howes, 1988, Howes & Matheson, 1992]).
tion skills, cooperative behavior, and joint attention (Shire  Complex cooperative or social play is critical to develop-

et al., 2020). Play develops in a natural progression among  ment and is understood as a merger between two crucial
typically developing (TD) children. Beginning around age  areas: cognitive development and socioemotional develop-
two, play skills progress from parallel play (play ment (Jordan, 2003)
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Meta-Analysis of Single-Case Design Research:
Application of Multilevel Modeling

Mikyung Shin, Stephanie L. Hart, and Michelle Simmons
Department of Education, Center for Learning Disabilities, West Texas A&M University

This study describes the ber and challenges of meta-analyses of single-case design research using
multilevel modeling. The researchers illustrate procedures for conducting meta-analyses using four-level
through open-source R code. The demonstration uses data from multiple-baseline
ross-panticipant single-case design studies (7 = 21) on word problem instruction for

isabilities published between 1975 and 2023. Researchers explore chas

the sample data. The researchers conclude that word problem solving of students with learing disabilities
varies based o gle-word problem, mixed-word
problem, and gene c 1 differed across adjacent phascs. These
findings extend previous literature on meta-analyses methodology by describing how muliilevel modeling
can be used to compare the impacts of tin g predictors within and across cases when analyzing
single-case de: rchers may want to use this methodology to explore the role
time-varying predictors as well as case or study-level moderators.
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